

Training Session 2 10.06.2015

Errichtung eines Biomasse Logistik Zentrums - 2

Inhalt

- o Einführung: Machbarkeitsstudie
- Bewertung der Biomasseverfügbarkeit
- Einschätzung des Markts
- Untersuchung der Rahmenbedingungen
- Evaluierung des Betriebs
- Wirtschaftliche Machbarkeit

Machbarkeitsstudie

UNTERSUCHUNG DER RAHMENBEDINGUNGEN

UNTERSUCHUNG DES AGRAR-BETRIEBS

MACHBARKEITSABSCHÄTZUNG VON VERSCHIEDENEN MÖGLICHKEITEN, UM EIN LOGISTIK ZENTRUM ZU WERDEN

Errichtung eines Biomasse Logistik Zentrums

Machbarkeitsstudie

UNTERSUCHUNG DER RAHMENBEDINGUNGEN

Verfügbarkeit von Rohstoffen Markt & Konkurrenz

Bereitsstellung der Produkte zu vernüftigen Preisen muss gewährleistet werden

Die hergestellte Biomasse-Qualtiät muss den Marktanforderungen entsprechen

Machbarkeitsstudie

Ist die neue Aktivität technisch und wirtschaftlich machbar?

Anhand zweier Beispiele:

Österreich:

AKTUELLE AKTIVITÄT:

- Maisernte, Verarbeitung, Handel
- Logistiker f
 ür Stroh
- Produktion von Futtermittel und Einstreumaterialien

GEWÜNSCHTE NEUE AKTIVITÄT:

- Maisspindel Grits
- Lose Maisspindel
- Pellets aus Stroh und Heu
- Pellets aus Maisspindel und Heu

WICHTIGSTE KOMPATIBLE MASCHINEN:

- Trockner von der Einstreuproduktion
- Pelletierer von der Futtermittelproduktion

Spanien:

AKTUELLE AKTIVITÄT:

- Luzernetrocknung
- Getreidetrocknung und Handel
- Produktion von Futtermittel

GEWÜNSCHTE NEUE AKTIVITÄT:

- Pellets aus Stroh
- Pellets aus Maisstroh
- Gemischte Pellets of Maisstroh und Stroh

WICHTIGSTE KOMPATIBLE MASCHINEN:

Trocknungslinie f
ür Luzerne

09-10-2015

Überprüfung der Grafik aus D3.2

- Überprüfung der **Wirklichkeit** (30-50 km
- Umkreis) und der Verfügbaren %.
- Wer sind die mögliche Rohstofflieferanten?
- Rücksprache mit anderen Marktteilnehmern (für eine realistische Bewertung). Informationen über:
 - Preise der Rohstoffe
 - Preise der Ernte (+ Ballen pressen)
 - Preise des Transports
 - > Arten von Verträgen

Nicht verwendete, verfügbare
Biomasse
(% der Verfügbarkeit wurden
berücksichtigt)

VERMEIDEN VON UNERWÜNSCHTEN oder UNREALISTISCHEN SZENARIEN

Welcher Reststoff ist verfügbar?

Wann ist die Erntezeit?

Wie hoch ist der Ernteertrag des Reststoffs pro Jahr (t/ha)?

Wie weit sind die Felder vom Agrar-Betreib entfernt (km)?

Kosten für die Ernte der Reststoffe (€/t oder €/ha)? Gibt es Maschinen um den Reststoff zu ernten? Wer besitzt diese Maschinen? Besitzt der Agrar-Betrieb eine solche Maschine?

Wer erntet die Felder? Bauer, Logistiker?

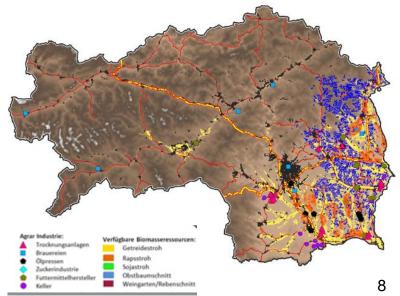
Kosten für Transport zum Agrar-Betrieb(€/t)?

Gibt es einen Markt für den Reststoff? Wenn ja, welche Preise herschen dort (€/t)?

Beispiel: Österreich

VERFÜGBARE ROHSTOFFE (30 km Umkreis)

3280 t/yr Weizenstroh


1910 t/yr Gerstenstroh

15249 t/yr Maisspindel

200 t/yr Heu von schlechter Qualität

Tschiggerl hat als Logistiker Zugang zu 2100 t/yr

Tschiggerl erntet 1350 ha Mais = 2025 t/yr
Er besitzt als Einer der Wenigen Erntemaschinen für Maisspindeln

Beispiel: Österreich

Maisspindelertrag: ca. 1,5 t/ha

Adaptierung der Erntemaschine: 15.000 €

Beispiel: Österreich

VERFÜGBARE ROHSTOFFE	SAISONALITÄT WASSER- GEHALT (w-% ar)	Kaufpreis (€/t) des Agrar-Betriebs [exklusive Transport]
Weizenstroh 3280 t/yr Gerstenstroh 1910 t/yr	Juli-Aug. 15 %	70-90 €/t in Ballen (30-50 €/t Rohstoff + 40 €/t Ernte und Pressen)
Maisspindel 15249 t/yr	Sept-Okt 20-35 %	36-50 €/t als Schüttgut 36 €/t (2025 t/yr)
Heu 200 t/yr	Juni-Sept 15 %	0-20 €/t in Ballen

Saisonale Verträge zu den marktüblichen Bedingungen!

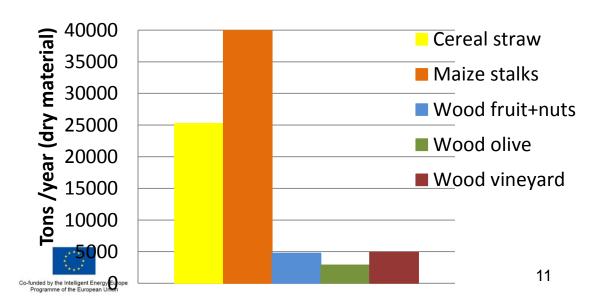
Qualität?

Wann ist die NACHFRAGE? Braucht es eine Trocknung?

Zu welchen Preis muss das Produkt verkauft werden, um die Kosten zu decken?

Beispiel: Spanien

Verfügbare Ressourcen von den Genossenschaftsmitgliedern Im Umkreis von 18 km


VERFÜGBARE ROHSTOFFE

11000 t/yr Getreidestroh 8000 t/yr Maisstroh

DIE GENOSSENSCHAFT SICHERT DEN BEDARF AN ROHSTOFFEN 2 MITGLIEDER SIND LOGISTIKER

Biomass resources available 30 km

Beispiel: Spanien

VERFÜGBARE ROHSTOFFE	SAISONALITÄT WASSER- GEHALT (w-% ar)	Kaufpreis (€/t) des Agrar-Betriebs [Transport inkludiert, max 18 km]
Getreidestroh 11000 t/yr	Juli-Aug. 15 %	36-42 €/t in Ballen
Maisstroh 8000 t/yr	Nov. 20-25 %	21 €/t lose

Qualität?

Braucht es eine Trocknung?

Zu welchen Preis muss das Produkt verkauft werden, um die Kosten zu decken?

Einschätzung des Marktes

Anforderungen von möglichen Kunden:

Gibt es in der Region eine wirkliche Nachfrage nach fester Biomasse?

Wer sind die möglichen Konsumenten?

Welche Form und Qualität (Wasser, Asche) wird benötigt?

Wer ist die Konkurrenz?

Um welchen Preis wird Biomasse in der Region verkauft?

Wollen Kunden Biomasseprodukte?

standardisierte

13

Einschätzung des Marktes

14

Beispiel: Österreich

Situation in der Südoststeiermark:

- rund 60 % der Heizenergie wird mit Biomasse gedeckt,
- 30 % mit Öl und 10 % mit Strom. Ziel: 30 % Öl durch Biomasse erstetzen, aber Problem durch zu geringe Waldfläche: Chance für Agrar-Brennstoffe!
- Hauptmarkt: Landwirtschaftliche Betriebe, Haushalte
- Konkurrenz: Hackschnitzel (durschnittlich 90 €/ atro-t,)

Holz Pellets (240 €/t, M10, A3)

Einschätzung des Markts

15

Beispiel: Spanien

Situation in der Region des Agrar-Betriebs:

- Konsum von Biomasse aus Holz
- Hauptmarkt : Schweinebauern (24 Stunden Nachfrage)
- Nachgefragte Qualität: A7, M25
- Konkurrenz: Oliven Trester+Kerne (110 €/t)

Weintraubentrester (79 €/t)

Holz Pellets (160-170 €/t)

Hackschnitzel(70- 100 €/t)

Mandelschalen (80-130 €/t)

Untersuchung der Rahmenbedingungen beschung der Rahmenbedingung der

Co-funded by the Intelligent Energy Europe

Beispiel: Österreich Biomasseverfügbarkeit vs Marktanalyse

VERFÜGBARE ROHSTOFFE	Einkaufpreis (€/t) des Agrar-Betriebs [exklusive Transport]					
Weizenstroh	70.00 6/4 in Ballan	ļ				
Gerstenstroh	70-90 €/t in Ballen	П				
Maisspindel	36-50 €/t					
Heu	0-20 €/t in Ballen					
Heu 0-20 €/t in Ballen IST DAS PROJEKT ÖKONOMISCH ÖKONOMISCH MACHBAR?						

Produktionskosten

+ €/t Transport zum Konsumenten

= €/t MINIMALPREIS

KONKURRENZ

Hackschnitzel 90 €/t Holz Pellets 240 €/t

Untersuchung der Rahmenbedingungen

Beispiel Österreich: Biomassebewertung vs Marktanalyse

IST DAS PROJEKT ÖKONOMISCH MACHBAR?

Verfügbare RESSOURCEN	LHV db (MJ/kg)	Asche- gehalt (w-% db)	Ascheschmelz -punkt (°C)	N (w-% db)	CI (w-% db)
Getreidestroh	17,0-19,0	4,4-7,0	800-900	0,3-0,8	0,03-0,05
Maisspindel	16,5	1,0-3,0	1100	0,4-0,9	0,02
Heu	18,3	5,5	820-1150	1,6	0,09

Holz ISO 17225-2 A1 ≥ 16,5 ≤	,7 deklarieren (~1300-1400)	≤ 0,3	≤ 0,02
---------------------------------	--------------------------------	-------	--------

Source: MixBioPells Initiators Handbook, EN-ISO 17225

Untersuchung der Rahmenbe

ENTSPRICHT DAS PROJEKT DEN DUALITÄTSKRITERIEN?

Beispiel: Österreich Biomassebewertung vs Marktanalyse

	Verfügbare Ressourcen	LHV db (MJ/kg)	Asche- gehalt (w-% db)	Asche- schmelzpkt (°C)	N (w-% db)	(w-% db)	
	Getreidestroh	17,0-19,0	4,4-7,0	800-900	0,3-0,8	0,03-0,05	
	Maisspindel	16,5	1,0-3,0	1100	0,4-0,9	0,02	
	Heu	18,3	5,5	820-1150	1,6	0,09	
	Holz ISO 17225-2 A1	≥ 16,5	≤ 0,7	Zu deklarieren	≤ 0,3	≤ 0,02	
			7	Mischung m	nit Holz erfo	orderlich? N	löglid
Ni	icht-holzartige Pellets ISO 17225-6 A	≥ 14,5	< 6,0	To declare	< 1,5	< 0,1	
Ni	icht-holzartige Pellets ISO 17225-6 B	≥ 14,5	< 10,0	To declare	< 2,0	< 0,3	

Source: MixBioPells Initiators Handbook, EN-ISO 17225

Untersuchung der Rahmenbedingungen sucellog

Beispiel: Spanien Biomassebewertung vs Marktanalyse

Verfügbare Rohstoffe	Verkaufspreise (€/t) der Agroindustrie [Transportkosten inkl.]
Getreidestroh	36 €/t in Ballen
Maisstengel	21 €/t lose

+ €/t Produktionskosten
+ €/t Transport zum Kunde

+ €/t Transport zum Kunden

= €/t MINIMUM

Konkurrenten

Oliventrester + -kerne (110 €/t)

Traubenmark (79 €/t)

Holzpellets (160-170 €/t)

Hackschnitzel (70- 100 €/t)

Mandelschalen (80-130 €/t)

Untersuchung der Rahmenbedinguge

Beispiel: Spanien Biomassbewertung vs Marktanalyse

ENTSPRICHT DAS
PROJEKT DEN
QUALITÄTSKRITERIEN?

Verfügbare Ressourcen	LHV db (MJ/kg)	Asche- gehalt (w-% db)	Ascheschmelz- punkt (°C)	N (w-% db)	CI (w-% db)
Getreidestroh	17,0-19,0	4,4-7,0	800-900	0,3-0,8	0,03-0,05
Maisstengel	16,6-17,5	11,0-17,0	1250	0,7-0,9	-

Holz ISO 17225-2 B	≥ 16,5	≤ 2,0	Zu deklarieren	≤ 1,0	≤ 0,03
Olivenkerne UNE 164003 B	≥ 14,9	≤ 1,5	Zu deklarieren	≤ 0,6	≤ 0,05

Source: MixBioPells Initiators Handbook, EN-ISO 17225, UNE 164003

Untersuchung der Rahmenbedingungen sucellog

Beispiel: Spanien

Biomassebewertung vs Marktanalyse

Verfügbare Ressourcen	LHV db (MJ/kg)	Asche- gehalt (w-% db)	Asche- schmelzpunkt (°C)	N (w-% db)	CI (w-% db)
Getreidestroh	17,0-19,0	4,4-7,0	800-900	0,3-0,8	0,03-0,05
Maisstengel	16,6-17,5	11,0-17,0	1250	0,7-0,9	-
Holz ISO 17225-2 B	≥ 16,5	≤ 2,0	Zu deklarieren	≤ 1,0	€ 0,03

Source: MixBioPells Initiators Handbook, EN-ISO 17225

QUALITÄTSKRITERIEN?

Untersuchung der Rahmenbed

IS THIS PROJECT
FEASIBLE FROM THE
QUALITY POINT OF
VIEW?

Beispiel: Spanien

Biomassebewertung vs Marktanalyse

Verfügbare Ressourcen	LHV db (MJ/kg)	Asche- gehalt (w-% db)	Ascheschmelz- punkt (°C)	N (w-% db)	CI (w-% db)
Getreidestroh	17,0-19,0	4,4-7,0	800-900	0,3-0,8	0,03-0,05
Maisstengel	16,6-17,5	11,0-17,0	1250	0,7-0,9	-
Holz ISO 17225-2 B	≥ 16,5	≤ 2,0	Zu deklarieren	≤ 1,0	≤ 0,03

Mischung mit Holz erforderlich? Möglich?

Nicht-holzartige Pellets ISO 17225-6 A	≥ 14,5	< 6,0	Zu deklarieren	< 1,5	< 0,1	
Nicht-holzartige Pellets ISO 17225-6 B	≥ 14,5	< 10,0	Zu deklarieren	< 2,0	< 0,3	k,

09-10-2015

EIN-130 1/225

Evaluierung

UNTERSUCHUNG DER RAHMENBEDINGUNGEN

UNTERSUCHUNG DES AGRAR-BETRIEBS

ANALYSE der verschiedenen OPTIONEN, um ein Biomasse-Logistik-Zentrum zu werden

ENTSTEHUNG eines Biomasse-Logistik-Zentrums

- Stehzeiten?
- Kompatible Maschinen (Trockner und/oder Pelletierer) mit verfügbaren Kapazitäten ?

Vertikale Trockner für Getreidetrocknung:

Kor Nic

Kompatibel mit Grits und Chips Nicht möglich für Stroh/Heu

Kompatibel mit Granulaten aus: Olivenkernen, Mandelschalen etc. Schwierig mit Chips. Nicht möglich mit Stroh/Heu

Stehzeiten?

09-10-2015

Kompatible Maschinen (Trockner und/oder Pelletierer) mit verfügbaren Kapazitäten?

Bandtrockner:

Kompatibel mit allen Format-Typen: Granuliert oder Chips

- Stehzeiten?
- Kompatible Maschinen (Trockner und/oder Pelletierer) mit verfügbaren Kapaziäten ?

Pelletierer:

Die Matritze ist designd für Heu/Stroh, ist aber kompatibel mit holzartigen Reststoffen

Stehzeiten
Kompatible Maschinen
(Trockner und/oder Pelletierer)
mit verfügbaren Ressourcen

Wieviel kann theoretisch produziert werden? t/yr

Wie viele Tonnen/h können produziert werden?

Wie hoch sind die Produktionskosten (€/h)?

Sind Investitionen notwendig? ?

Feedback des Geschäftsführers? Unterschiedliche Szenarien sollen kreirt werden

> Wie hoch sind die Wartungskosten durch die Umstellung auf mögliche neue Rohstoffe (€/t) ? Geräte + Stunden

Evaluierung der Personalstruktur

Wird ein neuer Mitarbeiter für die neue Businesslinie angestellt?

Wieviele Stunden werden dafür kalkuliert?

Wie hoch sind die Kosten für den neuen Mitarbeiter in Bezug auf die neue Businesslinie?

Evaluierung des Betriebs

Beispiel: Österreich

Trockner	
Produktionszeit	Okt-Nov
Maximale Kapazität	1 t/h
Aktuelle Kapazität	50 t/yr

Pelletierer	
Produktionszeit	ganzjährig
Maximale Kapazität	5 t/h
Aktuelle Kapazität	800 t/yr

Keine Investition notwendig !!!

Maschinen sind unausgelastet!!!

Evaluierung des Betriebs

Beispiel: Spanien

Produkionskostenabgeleitet vonder Kapazität!

Luzernkapazität: 10 t/h

~ Maisstengelkapazität 7,5 t/h

~ Strohkapazität 7 t/h

~ Holzkapazität 5 t/h

Empfang und Kontrolle

Lager

Hacker 10 t/h

Trockner 12 t/h

Mühle+ Pelletierer 10 t/h

Abgeleitete Wartungskosten unter Berücksichtigung des Materialtyps!

Ökonomische Machbarkeitsstudie

Beispiel: Österreich

Scenario Tsch		Total costs					
Solid biomass type	Quantity	Fixed costs		Purchasing	Pretreatment	Fixed revenue	Production cost
		Investment	Personnel	cost	costs		
	tons	€/ton	€/ton	€/ton	€/ton	€/ton	€/ton
Corn cob grits for sale	750	0	3,26	55,21	13,33	4,04	67,76
Loose corn cobs for sale	750	0	3,26	51,76	0,00	4,04	50,98
Mixed cobs and hay pellets	830	0	3,26	54,94	120,68	4,04	174,83
Mixed straw and hay pellets	2.120	0	3,26	83,55	110,00	4,04	192,76
Rental of warehouse						18.000	

Danke für Ihre Aufmerksamkeit!!

Wir empfehlen, Ihnen, einen Blick auf die im Zuge des Projekts Sucellog entstandenen Handbücher zu werfen

Für weitere Informationen zur technisch-wirtschaftlichen Machbarkeitsstudie, die für einen Betrieb in Österreich von SUCELLOG durchgeführt wurde, siehe Dokument D4.3, das auf der Website (auf Deutsch) erhältlich ist

Mag. Tanja Solar tanja.solar@lk-stmk.at

