

Sessione di formazione 2 2 Luglio, Pistoia

Iniziare a costruire un centro logistico per la biomassa - 2

Contenuti

- o Introduzione: studio di fattibilità tecnica ed economica
- Valutazione dell'acquisto di biomassa
- Valutazione del mercato delle biomasse
- Studio delle condizioni al contorno
- Valutazione dello studio economico di fattibilità

Studio di fattibilità tecnica ed economica

VALUTAZIONE DI CONDIZIONI AL CONTORNO

VALUTAZIONE DELL'AZIENDA

STUDIO DI FATTIBILITA' SULLE DIVERSE
OPPORTUNITA' PER DIVENTARE UN CENTRO
LOGISTICO

COSTRUZIONE DEL CENTRO LOGISTICO PER IL TRATTAMENTO DI BIOMASSA

Studio di fattibilità tecnica ed economica

VALUTAZIONE DELLE CONDIZIONI AL CONTORNO

Materia prima disponibile Mercato in cui competere

E 'essenziale garantire l'approvvigionamento a un costo accettabile

È essenziale assicurare una certa qualità di biomassa che possa essere assorbita dal mercato

Studio di fattibilità tecnica ed economica

2 esempi:

La nuova attività è

tecnicamente ed

economicamente

fattibile?

Caso Austriaco:

Caso spagnolo:

ATTIVITA' ATTUALI:

- Raccolta, trattamento e commercio di mais
- Operatore logistico racco di paglia
- Produzione mangimistica e a animali

RICHIESTE PER LA NUOVA LIN

- Tutoli di mais tritati
- Tutoli di mais.
- Pellets misti di paglia e fieno
- Pellets misti di tutoli di mais e fieno

PRINCIPALI ATTREZZATURE COMPATIBILI:

- Essiccatore per la produzione di lettiere
- Pellettizzatore dalla produzione di mangimi

ATTIVITA' ATTUALI:

Disidratazione di erba medica Essicazione e commercio di cereali zione mangimistica

PER LA NUOVA LINEA DI BUSINESS:

di paglia

Pe di stocchi di mais

Pellet misto di mais e paglia

PRINCIPALI ATTREZZATURE COMPATIBILI:

Linea disidratazione di erba medica

Valutazione dell'acquisto di biomassa sucellog

Controllare le mappe del D3.2

Biomassa disponibile senza altri utilizzi agonistici? (Considerare una % della disponibile)

- Controllare la **realtà intorno** (30-50 km di distanza, scala locale) e la % di disponibilità.
- Verificare la volontà dell'agroindustria. I suoi membri sono possibili fornitori di materie prime?
- Parlare con gli operatori logistici (che vi permetterà di conoscere la realtà - "media di tutte le realtà di agricoltori"). Informazioni su:
 - Costi della materia prima
 - Costi della raccolta (+ pressatura)
 - Costi di trasporto
 - Migliore tipologia di contratto

EVITARE SCENARI INDESIDERATI O **IRREALI!**

Valutazione dell'acquisto di biomassa 🕬 sucellog

Che tipo di residuo è prodotto in campo?

In quale stagione viene prodotto?

residuo/anno Quanto prodotto dagli viene agricoltori (t/ha)?

Qual è la distanza tra i terreni e l'agroindustria (km)?

Costo della raccolta di questo residuo (€/t or €/ha)?

agricoltori hanno i macchinari per raccogliere questo residuo? Tutti gli agricoltori hanno un mietitore o lo possono condividere? Ш macchinario apppartiene all'azienda?

Gli agricoltori fanno la raccolta sui loro campi?

Oppure usano operatori logistici?

Costi di trasporto all'agroindustria (€/t)?

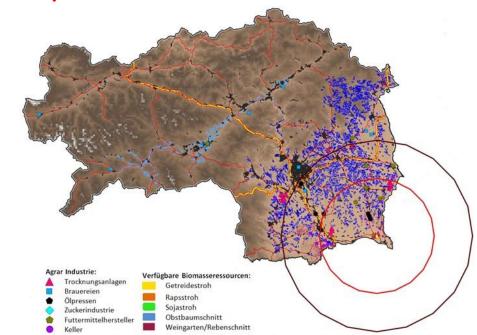
il Qual mercato questo residuo, se esiste? Qual prezzo mercato (€/t)?

Valutazione dell'acquisto di biomassa 🕪 sucellog

Esempio: caso Austriaco

RISORSE DISPONIBILI (raggio di 30 km)

3280 t/anno paglia di grano


1910 t/anno paglia d'orze

15249 t/anno tutoli di mais

200 t/anno fieno di scarsa qualità

Il manager è un operatore logistico, avendo accesso a 2.100 t/anno

Il manager processa il grano dai 1350 ha = 2025 t/anno Ha una delle poche attrezzature sul mercato

Valutazione dell'acquisto di biomassa 🕬 sucellog

Esempio: caso Austriaco

Tutoli di mais: 1,5 t/ha

Modifiche di normali macchinari: 15000 €

Valutazione dell'acquisto di biomassa sucellog

Esempio: caso Austriaco

RISORSE DISPONIBILI	SAGIONALITA' UMIDITA' (w-% ar)	PREZZO DI ACQUISTO (€/t) dell'agroindustria [Transporto non incluso]
paglia di grano 3280 t/anno	Lug-Ago	70-90 €/t di balle
paglia d'orzo 1910 t/anno	15 %	(30-50 €/t risorsa + 40 €/t raccolta-pressatura)
tutoli di mais 15249 t/anno	Set-Ott 20-35 %	36-50 €/t 36 €/t sciolto (2025 t/anno)
fieno di scarsa qualità 200 t/anno	Giu-Set 15 %	0-20 €/t di balle

Qual è la qualità?

Quando c'è **DOMANDA** sul mercato? C'è bisogno di essicazione?

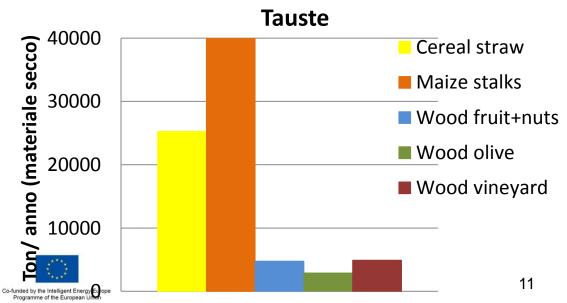
CONTRATTI PER CAMPAGNA in base al mercato! Come avviene normalmente!

> A che prezzo si ha intenzione di vendere il prodotto per coprire il costo della materia prima?

Valutazione dell'acquisto di biomassa sucellog

Esempio: caso Spagnolo

Risorse disponibili degli associati in un raggio di 18 km al massimo


RISORSE DISPONIBILI

11000 t/anno paglia di cereali 8000 t/anno stocchi di mais

LA COOPERATIVA PUO' ASSICURARE L'APPROVIGIONAMENTO DI RISORSE 2 ASSOCIATE SONO GLI OPERATORI LOGISTICI

Risorse di Biomassa disponibili in 30 km:

Valutazione dell'acquisto di biomassa 🕬 sucellog

Esempio: caso Spagnolo

RISORSE DISPONIBILI	STAGIONALITA' UMIDITA' (w-% ar)	PREZZO DI ACQUISTO(€/t) dell'agroindustria [Trasporto incluso, massimo 18 km]
paglia di cereali 11000 t/anno	Lug-Ago 15 %	36-42 €/t di balle
stocchi di mais 8000 t/anno	Nov 20-25 %	21 €/t sciolto, non in balle

Qual è la qualità?

C'è bisogno di essicazione?

A che prezzo si ha intenzione di vendere il prodotto per coprire il costo della materia prima?

Capire le caratteristiche degli eventuali consumatori:

C'è una reale domanda di biomassa solida?

Chi sono i potenziali consumatori?

Quali sono il formato e la qualità (M, AC, PSD) richiesti?

Chi sono i concorrenti?

A che prezzo viene venduta la biomassa solida in zona?

13

I consumatori chiedono biomassa standardizzata?

Esempio: caso Austriaco

Nell'area dell'agroindustria:

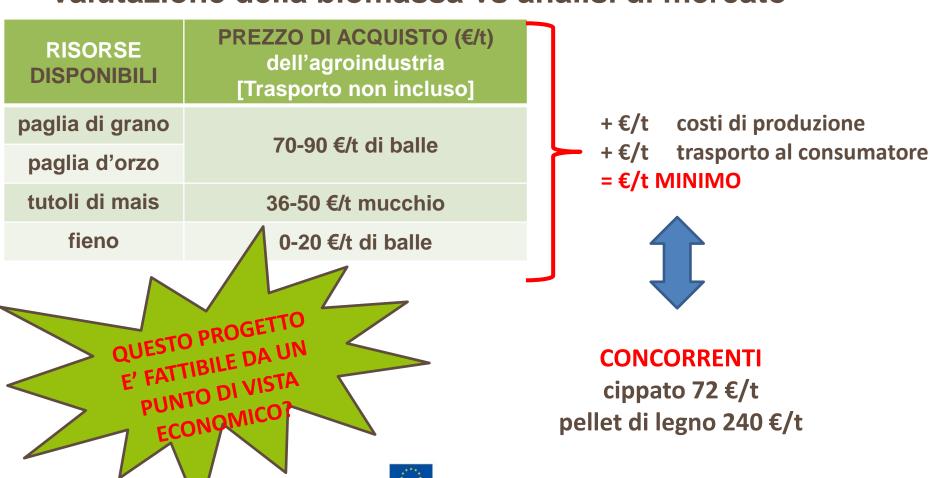
- Il 60% della domanda di riscaldamento è coperto con energia da biomasse, il 30% da petrolio e il 10% da energia elettrica.
 L'obiettivo è sostituire il 30% di petrolio con la biomassa, problema con il legno boschivo: opportunità per agrocombustibile!
- Mercato principale: coltivatori per usi domestici e agricoli
- Concorrenti: cippato (72 €/t, M20, A3)
 pellet di legno (240 €/t, M10, A3)

Esempio: caso Spagnolo

Nell'area dell'agroindustria:

- Consumo di foreste e prodotti agroindustriali
- Mercato principale: allevamenti di maiali (domanda 24 ore)
- Principale qualità richiesta: M25, A7
- Concorrenti: sansa di oliva + nocciolino (110 €/t)

vinacce (79 €/t)


pellet di legno (160-170 €/t)

cippato di legno (70- 100 €/t)

guscio di mandorla (80-130 €/t)

Esempio: caso Austriaco Valutazione della biomassa vs analisi di mercato

Co-funded by the Intelligent Energy Europe

09-10-2015

Esempio: caso Austriaco Valutazione della biomassa vs analisi ar mer

IL PROGETTO E
FATTIBILE DA UN
PUNTO DI VISTA
DELLA QUALITA'?

RISORSE DISPONIBILI	PCI ar (MJ/kg)	Contenuto di cenere (w-% biomassa secca)	Temperatura fusione cenere (°C)	N (w-% biomassa secca)	CI (w-% biomassa secca)
paglia di cereali	17,0-19,0	4,4-7,0	800-900	0,3-0,8	0,03-0,05
tutoli di mais	16,5	1,0-3,0	1100	0,4-0,9	0,02
fieno	18,3	5,5	820-1150	1,6	0,09

Legno	≥ 16,5	< 2	da dichiarare	< 0.3	< 0.02
ISO 17225-2 A1	2 10,5	23	(~1300-1400)	2 0,3	20,02

Fonte: MixBioPells Initiators Handbook, EN-ISO 17225

IL PROGETTO E'
FATTIBILE DA UN
PUNTO DI VISTA
DELLA QUALITA'?

Esempio: caso Austriaco Valutazione della biomassa vs analisi di mercato

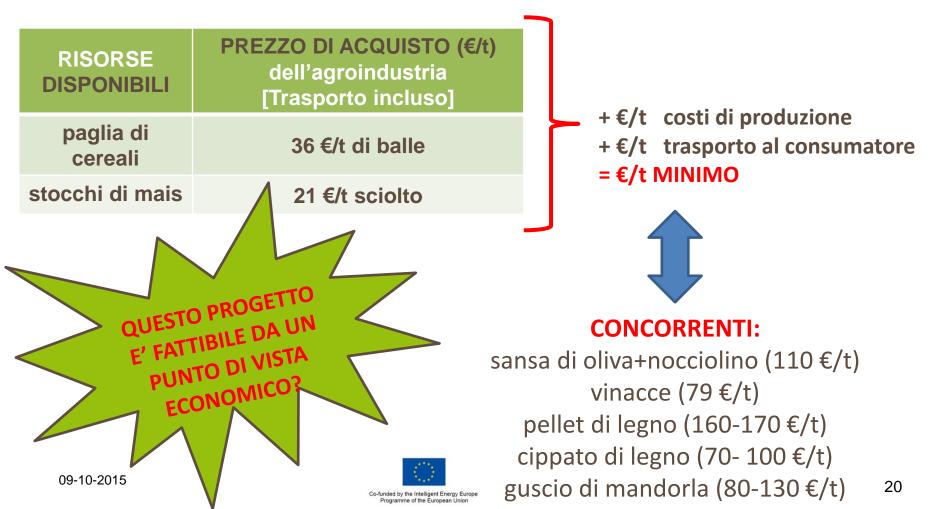
Contenuto di CI **Temperatura RISORSE** PCI ar fusione (w-% (w-% cenere **DISPONIBILI** biomassa (MJ/kg) (w-% biomassa biomassa cenere (°C) secca) secca) secca) paglia di cereali 17,0-19,0 4,4-7,0 800-900 0,3-0,8 0,03-0,05 tutoli di mais 0,4-0,9 16,5 1,0-3,0 1100 0,02 fieno 18,3 5,5 820-1150 1,6 0,09

Legno	> 4 G E	< 0.7	da dichiarare	< 0.2	< 0.02
ISO 17225-2 A1	≥ 16,5	≥ 0,7	(~1300-1400)	≥ 0,3	≥ 0,02

Fonte: MixBioPells Initiators Handbook, EN-ISO 17225

Esempio: caso Austriaco Valutazione della biomassa vs analisi en mer

IL PROGETTO E
FATTIBILE DA UN
PUNTO DI VISTA
DELLA QUALITA'?


	RISORSE ISPONIBILI		CI ar IJ/kg)	Co	ontenuto di cenere (w-% bs)	Temp fusione cenere (°C)	N (w-% bs)	(w-%	
pag	glia di cereali	17	0-19,0		4,4-7,0	800-900	0,3-0,8	0,03-	0,05
tu	toli di mais	,	16,5		1,0-3,0	1100	0,4-0,9	0,0)2
	fieno		18,3		5,5	820-1150	1,6	0,0)9
ISO	Legno 17225-2 A1	≥	16,5	4	≤ 0,7	da dichiarare (~1300-1400)	≤ 0,3	≤ 0 ,	,02
				7	È necessaria	a la miscela con	il legno?È p	oossibile?	1
	Pellet non legn ISO 17225-6 A		≥ 14	,5	< 6,0	da dichiarare	< 1,5	< 0,1	
	Pellet non legn ISO 17225-6 B		≥ 14	,5	< 10,0	da dichiarare	< 2,0	< 0,3	

Co-funded by the Intelligent Energy Europe

Fonte: MixBioPells Initiators Handbook, EN-ISO 17225

Esempio: caso Spagnolo Valutazione della biomassa vs analisi di mercato

Esempio: caso Spagnolo

Valutazione della biomassa vs analisi di mer at

IL PROGETTO E
FATTIBILE DA UN
PUNTO DI VISTA
DELLA QUALITA?

RISORSE DISPONIBILI	PCI ar (MJ/kg)	Contenuto di cenere (w-% bs)	Temperatura fusione cenere (°C)	N (w-% bs)	CI (w-% bs)
paglia di cereali	15,5	5,1	902	0,9	0,14
stocchi di mais	14,6	8,2	780	1,0	0,17

È necessaria la miscela con il legno? È possibile?

Pellets non legno ISO 17225-6 A	≥ 14,5	< 6,0	Da dichiarare	< 1,5	< 0,10
Pellets non legno ISO 17225-6 B	≥ 14,5	< 10,0	Da dichiarare	< 2,0	< 0,30

Fonte: EN-ISO 17225

IL PROGETTO E FATTIBILE DA UN PUNTO DI VISTA DELLA QUALITA'?

Esempio: caso Spagnolo

Valutazione della biomassa vs analisi di me

RISORSE DISPONIBILI	PCI ar (MJ/kg)	Contenuto di cenere (w-% bs)	Temperatura fusione cenere (°C)	N (w-% bs)	CI (w-% bs)	
Pellet non legno 65 % Paglia 35 % Legno	15,8	4,1	A declarar	0,9	0,10	
Pellet non legno 55 % Stocchi 45 % Legno	15,4	5,5	A declarar	1,0	0,10	
Pellet non legno	≥ 14,5	< 6,0	Da dichiarare	< 1,5	< 0,1	

Fonte: EN-ISO 17225

CONCORRENTI	PREZZO (€/t)	PREZZO (€/kWh)	PREZZO (€/m³)	Contenuto di cenere (% m bs)
Nocciolino	150	0,031	75	1 - 4
Sansa di oliva	110	0,023	55	5 - 7
Vinacce	79	-	-	3 - 4
Pellet legno	165	0,035	107	< 3
Cippato	73	0,024	18	< 3
Pellet paglia/legno	ببند	???	333	4,1
Pellet stocchi/legno	???	???	???	5,5

Dipende del costo d'acquisto della materia prima e dal costo di produzione

Valutazione dell'azienda

VALUTAZIONE DI CONDIZIONI AL CONTORNO

VALUTAZIONE DELL'AZIENDA

STUDIO DELLE DIVERSE OPPORTUNITA' PER DIVENTARE UN CENTRO LOGISTICO

COSTRUZIONE DEL CENTRO LOGISTICO PER IL TRATTAMENTO DI BIOMASSA

- Periodo di inattività?
- Attrezzature compatibili (essiccatore e/o pellettizzatore) con le risorse disponibili?

Essicatori verticali per il grano:

Compatibile con prodotto granulato e cippati. Inutilizzabile con gli erbacei.

Compatibile con prodotto granulato: noccioli d'oliva, guscio di mandorla, etc.

Difficoltà con cippati. Inutilizzabile con gli erbacei.

- Periodo di inattività?
- Attrezzature compatibili (essiccatore e/o pellettizzatore) con le risorse disponibili?

Essiccatori orizzontali:

Compatibile con tutti i formati: granulato, cippato e erbacei

Compatibile con: granulato e cippato

27

- Periodo di inattività?
- Attrezzature compatibili (essiccatore e/o pellettizzatore) con le risorse disponibili?

Pellettizzatore:

09-10-2015

Progettato per gli erbacei ma compatibile con risorse legnose però...la produzione può anche dimezzarsi rispetto agli erbacei se la matrice non viene adattata!

Valutazione delle attrezzature dell'azienda sucellog

- Periodo di inattività
- Attrezzature compatibili (essiccatore e/o pellettizzatore) con le risorse disponibili

Quanto può essere prodotto teoricamente? t/anno

Quante t/ora di eventuali materie prime può processare il macchinario?

Qual è l'opinione del dirigente? Impostare diversi scenari possibili

Qual è il costo di produzione (€/h) ?

Sono necessari investimenti?

Qual è la manutenzione da fornire alla macchina con la eventuale materia prima (€/t)? Dispositivi+ore

Valutazione del personale dell'azienda sucellog

Verrà inserita una nuova persona con contratto per la nuova linea di business?

Quante ore sono necessarie per la nuova linea di business?

Quale sarà il costo del personale associato alla nuova linea di business?

Valutazione dell'azienda

Esempio: caso Austriaco

Essiccatore	
Mesi di produzione	Ott-Nov
Capacità produttiva massima	1 t/ora
Capacità produttiva attuale	50 t/anno

Pellettizzatore	
Mesi di produzione	Tutto l'anno
Capacità produttiva massima	5 t/ora
Capacità produttiva attuale	800 t/anno, 1600 ore/anno

Macchinari sottoutilizzati!!!

Nessun investimento richiesto!!!

09-10-2015

Valutazione dell'azienda

Esempio: caso Spagnolo

Estrapolare il costo di produzione dalla capacità produttiva!

capacità produttiva di erba medica: 10 t/ora

- capacità produttiva stocchi di mais 7,5 t/ora
- ~ capacità produttiva paglia 7 t/ora
- ~ capacità produttiva legno 5 t/ora

Ricezione e controllo

Stoccaggio

Trituratrice 10 t/ora

Essiccatore 12 t/ora

Macinatura + pellettizzazione 10 t/ora

Estrapolare il costo di manutenzione considerando la tipologia di materiale!

COSTO DELLA MATERIA PRIMA

Produzione di 1625 t/anno di biomassa (pellet, ISO 17225-6 A)

Pellet misto paglia/legno: 1119 t/anno paglia

617 t/anno legno

Prezzo paglia : 36 €/t, M15, balla

Prezzo legno (cippato): 73 €/t, M17, G30

Pellet misto stocchi/legno: 1073 t/anno stocchi

793 t/anno legno

Prezzo stocchi : 21 €/t, M25, sciolto

49 €/t

52 €/t

COSTO DI PRETRATTAMENTO

Produzione di 1625 t/anno di biomassa (pellet, ISO 17225-6 A)

Capacità di produzione (t/h)			
10	Erba medica		
7,5	Stocchi		
7	Paglia		
5	Legno		
Costi di pretrattamento(€/t)			
	Legno	Paglia	Stocchi
Tritato	3	2,1	2,0
Essiccazione	25	0	16,7
Macinazione e pellettizzazione	39	27,9	26,0

COSTO DI PRETRATTAMENTO-MANUTENZIONE

Produzione di 1625 t/anno di biomassa (pellet, ISO 17225-6 A)

	Costo pretrattamento (€/t) Elettricità + calore+ mano d'opera	Costo manutenzione (€/t) Forniture+ mano d'opera
Pellet misto 65% paglia – 35 % legno	43,9	1,2
Pellet misto 55% stocchi – 45 % legno	57,8	1,4

COSTI DI PRODUZIONE

Produzione di 1625 t/anno di biomassa (pellet, ISO 17225-6 A)

	Costo materia prima (€/t)	Costo pretrattamento (€/t) Elettricità+ calore+ mano d'opera	Costo manutenzione (€/t) Forniture+ mano d'opera	Costo personale (€/t)	Investi- menti (€/t)
Pellet misto 65% paglia 35 % legno	52	44	1,2	0	0
Pellet misto 55% stocchi 45 % legno	49	58	1,4	0	0

Produzione di 1625 t/anno di biomassa (pellet, ISO 17225-6 A)

	Costo di produzione (€/t)	Guadagno (€/t)	Costo di transporto (€/t)	Prezzo Minimo (€/t)
Pellet misto 65% paglia – 35 % legno	98	12	10	120
Pellet misto 55% stocchi – 45 % legno	109	12	10	135

Additivo: 5-10 €/t

Grazie per la vostra attenzione!!

Eva López - Grupo BERA sucellog@fcirce.es

Vi incoraggiamo a dare un'occhiata ai Handbook prodotti da SUCELLOG

Vedere informazioni dettagliate sullo studio di fattibilità tecnico-economica di un caso reale in Italia, realizzato da SUCELLOG, nel documento D4.3 disponibile in italiano sul sito web

