

Creation of biomass logistic centres within the agro-industry

Training for non-target regions, 3rd May 2016

Co-funded by the Intelligent Energy Europe Programme of the European Union

This project is co-funded by the European Commission, contract N°: IEE/13/638/SI2.675535

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

- **o Background of the project**
- **•** The Sucellog-Concept
- **o** What happened in the project
- **o Example Tschiggerl Agrar GmbH**
- Created documents
- \circ Outlook for the next training

Implementation of SUCELLOG conceptor sucellog

GOAL OF SUCELLOG:

- Foster the creation of a biomass logistic centre inside agro-industries
- Create the capacity on agrarian associations to help
 decision-making when starting this new business line
- * Solid biomass produced should have an agrarian origin (agrarian practice and/or agro-industrial residues)
- * No competition for raw material with stablished markets should be promoted
- * Most efficient energy paths should be promoted

Implementation of SUCELLOG conceptor-sucellog

Project Area:

potential analysis of residues
creation of a logistic centre in each country
Feasibility studies (technoeconomical)
free support of all interested persons

• EU 20-20-20 targets:

- A 20 % reduction in EU greenhouse gas emissions as compared to 1990 levels;
- Raising the share of EU energy consumption produced from renewable resources to 20 %;
- A 20 % improvement in the EU's energy efficiency as compared to 1990.

Background of the Project

TOTAL PRIMARY 2013: 1665 Mtoe (Total Primary and Secondary 2013: 1666 Mtoe)

- O Petroleum and Products
- O Gases
- O Solid Fuels
- Nuclear Heat
- O Renewables
- Waste, non-nenewable

Primary production of renewable energy by type in Europe – based on 177 Mtons of oil equivalent (source: Eurostat)

Use and growth of wood in Austria

Use of agrarian residues for energy

bioenergy production from crop residues in EU-27 (after considering competitive uses):

~36,5 Mtoe

creation of biomass logistic centres for the production and distribution of agro-fuels inside agro-industries

1. Evaluation of resources

- 2. Selection of suitable Agro-Industries
- 3. Feasibility Studies
- 4. tailor made business model
- 5. creation of logistic centre

o They have existing infrastructure/machinery

- o dryer, mill, pelletizer, storage, etc.
- little or no investments costs
- o idle periods

• They have experience with similar products

- access to residues through their regular activities
 - residues as waste from regular activity
 - residues from farmers with existing business relationships

The SUCELLOG concept

AGRO-INDUSTRIES as SEASONAL BIOMASS LOGISTIC CENTRE

Usual operation (Nov-Feb)

Target Agro-Industries

Forage dehydration

Feedstuff producer

Cereal dryer

Rice dryer

Tobacco dryer

Distillery

Sugar industry

Olive oil pomace industry

Dried fruits

Target residues

- cereal straw
- soya straw
- rape stalks
- corn stalks
- o corn cobs
- feedstuff residues
- nut shells

- vineyard prunings
- o olive prunings
- o olive pits
- o olive pomace
- o grape pits
- o grape marc
- o rice husks
- **etc.**

WHAT HAPPENED IN THE PROJECT

Implementation of SUCELLOG conceptor sucellog

GOAL OF SUCELLOG:

- Foster the creation of a biomass logistic centre inside agro-industries
- Create the capacity on the agrarian association to help decision-making when starting this new business line
- * Solid biomass produced should have an agrarian origin (agrarian practice and/or agro-industrial residues)
- * No competition for raw material with stablished markets should be promoted
- * Most efficient energy paths should be promoted

STEPS:

- 1. Detect biomass quantity per municipality
- 2. Check the target agro-industries in the region (type and location)
- 3. Analyse seasonality of biomass production and available equipment

TO BUILD THE MAPS IT IS ESSENTIAL to rely in REAL DATA of:

- Tons residue/ha
- AVAILABILITY: percentage of the residues that are not used for other purposes (market or soil amendment)
 - ✓ If a farmer, after taking the wheat grain, leaves the straw on the soil due to agrarian recommendations then availability should be considered 0%.
 - ✓ On the contrary, if the farmer leaves the straw on the soil just because the cost for harvesting does not cover the value in the animal feed market then availability is 100%.
 - ✓ It can also happen that in one region the 40% of the straw is commercialized for animal feed (so it has a market), a 20% is left on the soil as a recommended agrarian practice. Therefore, 40% of the straw is available for other uses like the production of solid biomass.

Possible problems when trying to reach the data for building the maps:

- No common practices in the same region (some farmers leave everything on the soil, some others harvest the product). Difficulty in producing a general idea.
- No inventories where to find the agro-industries (type and location)

Detect compatibilities in biomass production and equipment available in the region in terms of seasonality and technical compatibility

Regional evaluation of resources

and agro-industries – Step 3

Set which type of agro-industry could work with each type of residue

Secadero cereal y maíz Deshidratadora forraje Secadero arroz Destilerías

Tabla 3: Meses con disponibilidad de equipos y recursos en Aragón.

En Feb Mar Abril Mayo Jun Jul Agos Sep

10-06-2016

Set potential areas (transport connections taken into consideration)

Oct Nov Dic

Regional evaluation of resources and agro-industries

10-06-2016

Regional evaluation of resources and agro-industries

Vineyard prunings

Cellar

Selection of beneficiary

Tschiggerl Agrar GmbH

• Main activities before Sucellog:

- o Corn harvest, treatment and trading:
 - Corn drying to other farmers
 - Buying corn from other farmers and then selling it in the market
 - Harvesting the corn of other farmers acting as a logistic operator
 - Harvesting, drying and commercialising the corn of his own fields (150 ha/yr)

• Main activities before Sucellog:

- Logistic operator of straw:
 - Harvesting and baling straw and hay for farmers (~ 600 ha/yr)

Just 2-3 months of operation/year

Since 2006: operators are thinking about using corn cobs

 use of corn cobs to dry corn since 2012 o yearly savings: 250.000 litres heating oil 780 tons of CO2 • pay back time: 2 years

BUILDING A BIOMASS LOGISTIC CENTRE

ESSENTIAL INITIAL QUESTION: do the agro-industry want to start this new activity just to supply their own thermal consumption?

Assessment of the biomass procurement as sucellog

In which season it is produced?

How much residue is produced per year from the farmers (t/ha)?

Which is the distance from the fields to the agro-industry (km)?

Cost of harvesting this residue (€/t or €/ha)?

Do the farmers have machinery to harvest this residue? Do all farmers have a harvester or do they share? Does the machinery belong to the company?

Farmers harvest their fields? Logistic operator?

Cost of transport to the agro-industry $(\mathbf{\xi}/t)$?

Which is the market of this residue if any? Price in the market (\in/t) ?

Assessment of the biomass procurement be sucellog

Example: Tschiggerl Agrar GmbH

Manager is a logistic operator, having access to 2100 t/y

Manager processes the grain from 1350 ha = 2025 t/yr He has 1 of the few machinery in the market

Assessment of the biomass procurement be sucellog

Example:

Maize cobs: 1,5 t/ha Modifications of regular machinery

Assessment of the biomass procurement - sucellog

Example: Austrian case

	AVAILABLE RESOURCES	SEASONALITY MOISTURE (w-% ar)	PURCHASING PRICE (€/t) by the agro-industry [Transport not included]		
	wheat straw 3280 t/yr	July-Aug.	70-90 €/t baled		
	barley straw 1910 t/yr	15 %	(30-50 €/t resource + 40 €/t harv-baling)		
	maize cobs 15249 t/yr	Sept-Oct 20-35 %	36-50 €/t 36 €/t bulk (2025 t/yr)		
	poor quality hay 200 t/yr	June-Sept 15 %	0-20 €/t baled		
hich is the quality?		COI to ti	NTRACTS PER CAMPAIGN according ne market! Like they normally do!		
		When is the DEI	MAND Do we		
		need drying	? product to cover the raw material price ?		

Assessment of the biomass procurement as sucellog

Example: Spanish case

Resources available from the associates 18 km radio max

AVAILABLE RESOURCES

11000 t/yr cereal straw

8000 t/yr maize stalks

THE COOPERATIVE CAN ENSURE THE SUPPLY OF RESOURCES 2 ASSOCIATES ARE LOGISTIC OPERATORS

Biomass resources available 30 km: Tauste

Assessment of the biomass procurement Do-sucellog

Example: Spanish case

	AVAILABLE RESOURCES	SEASONALITY MOISTURE (w-% ar)	PURCHASING PRICE (€/t) by the agro-industry [Transport included, max 18 km]		
	cereal straw 11000 t/yr	July-Aug. 15 %	36-42 €/t baled		
	maize stalks 8000 t/yr	Nov. 20-25 %	21 €/t loose, not baled		
Vhich is the quality?		Do we ne	ed to dry? At which price are we going to sell the product to cover the		

Evaluation of the biomass market

Example: Austrian case

In the area of the agro-industry:

- 60 % of the heating demand covered by biomass energy, 30 % oil and 10 % electricity. Goal of substituting the 30 % oil by biomass, problem with forest wood: opportunity for agro-fuels!
- Main market: farmers for households and farm
- Competitors: wood chips (72 €/t, M25, A3)
 wood pellets (240 €/t, M10, A1)

Evaluation of the biomass market

Example: Spanish case

In the area of the agro-industry:

- Consumption of forest and agro-industrial products
- Main market: pork farms (24 hours demand)
- Main quality demanded: A7, M25
- Competitors: olive pomace+pits (110 €/t)

grape marc (79 \in /t) wood pellets (160-170 \in /t) wood chips (70- 100 \in /t) almond shell (80-130 \in /t)

Study of the boundary conditions

AVAILABLE RESOURCES	PURCHASING PRICE (€/t) by the agro-industry [Transport not included]			
wheat straw	70-90 €/t baled			
barley straw				
maize cobs	36-50 €/t			
hay	0-20 €/t baled			
IS THIS FEASIBLE ECONON	PROJECT FROM THE FROM THE IC POINT OF IEW?			

+ €/t production costs
+ €/t transport to consumer
= €/t MINIMUM

b- sucellog

COMPETITORS wood chips 72 €/t wood pellets 240 €/t

43

Study of the boundary condition

Example: Austrian case Biomass assessment vs market analysis

AVAILABLE RESOURCES	LHV db (MJ/kg)	Ash content (w-% db)	Ash fusion temperature (°C)	N (w-% db)	CI (w-% db)	
cereal straw	17,0-19,0	4,4-7,0	800-900	0,3-0,8	0,03-0,05	
maize cobs	16,5	1,0-3,0	1100	0,4-0,9	0,02	
hay	18,3	5,5	820-1150	1,6	0,09	
Wood ISO 17225-2 A1	≥ 16,5	≤ 0,7	To declare	≤ 0,3	≤ 0,02	
			Mixture wit	h wood is ı	required? Po	ssible
Agro-Pellets ISO 17225-6 A	> 14,1	< 5,0	To declare	< 1,5	< 0,2	
Agro-Pellets ISO 17225-6 B	> 13,2	< 10,0	To declare	< 2,0	< 0,3	

Source: MixBioPells Initiators Handbook,

IS THIS PROJECT

FEASIBLE FROM THE

QUALITY POINT OF

VIEW?

I-ISO 17225

Study of the boundary conditions

Do sucellog

Study of the boundary condition

Example: Spanish case Biomass assessment vs market analysis

AVAILABLE RESOURCES	LHV db (MJ/kg)	Ash content (w-% db)	Ash fusion temperature (°C)	N (w-% db)	Cl (w-% db)	
cereal straw	17,0-19,0	4,4-7,0	800-900	0,3-0,8	0,03-0,05	
maize stalks	16,6-17,5	11,0-17,0	1250	0,7-0,9	-	
Wood ISO 17225-2 B	≥ 16,5	≤ 2,0	To declare	≤ 1,0	≤ 0,03	
		Ţ	Mixture witl	n wood is r	equired? Po	ssible
Agro-Pellets ISO 17225-6 A	> 14,1	< 5,0	To declare	< 1,5	< 0,2	
Agro-Pellets ISO 17225-6 B	> 13,2	< 10,0	To declare	< 2,0	< 0,3	
			Source: MixBioP	Pells Initiato	ors Handboo	ok.

Co-funded by the Intelligent Energy Europe Programme of the European Union

ISO 17225

IS THIS PROJECT

FEASIBLE FROM THE

QUALITY POINT OF

VIEW?

Do sucellog Starting to build a logistic centre **EVALUATION OF THE EVALUATION OF BOUNDARY CONDITIONS** THE COMPANY Raw material to be procured Evaluation of existing equipment Analysis of company organization Biomass market to enter

ESSENTIAL INITIAL QUESTION: do the agro-industry want to start this new activity just to supply their own thermal consumption?

Evaluation of the company-equipment a sucellog

- Idle period ?
- Compatible equipment (drier and/or pelletiser) with available resources ?

Vertical driers used for grain:

Compatible with granulated product and chips Impossible for herbaceous

Compatible with granulated product: olive pits, almond shell, etc. Difficult with chips. Impossible for herbaceous

- Idle period ?
- Compatible equipment (drier and/or pelletiser) with available resources ?

Horizontal driers:

Compatible with all types of formats: granulated, chips and herbaceous

- Idle period ?
- Compatible equipment (drier and/or pelletiser) with available resources ?

Pelletiser:

Design for herbaceous but compatible with woody resources but...normally production is lower with wood!

Example: Tschiggerl Agrar GmbH

Evaluation of the company

Example: Austrian case

Dryer			
Months of production	Oct-Nov		
Maximum capacity	1 t/h		
Current capacity	50 t/yr		
Pelletiser			
Months of production	All the year		
Maximum capacity	5 t/h		
Current capacity	800 t/yr		

No investment required !!!

Equipment underused !!!

Evaluation of the company-personnel

A new person is going to be contracted for the business line?

How many hours for the new business line?

Which will be the cost of this personnel associated to the new business line?

What knowledge and qualification is needed?

Possible Agro-Fuels of Tschiggerl

http://www.sucellog.eu/en/publications-reports.html http://www.sucellog.eu/de/publications-reports-de.html

Created documents

• Handbook Resources report feasibility studies o business models training material

Triggering the creation of biomass logistic centres by the agro-industry

Handbook for agro-industries interested in starting a new activity as biomass logistic centre: the basic demand of information

Co-funded by the Intelligent Energy Europe Programme of the European Union

• How to make an feasibility study

- Feasibility study Tschiggerl
- Building a logistic centre
- Diagnosis & Auditing of agroindustries

SAFE THE DATE: 20th May 2016 9:30 - 11:30

Thank you for your attention !!

Co-funded by the Intelligent Energy Europe Programme of the European Union

This project is co-funded by the European Commission, contract N°: IEE/13/638/SI2.675535

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.